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Abstract
We calculated a four-point correlation function G4(�k, �r; t) and the
corresponding structure factor S4(�k, �q; t) for a model glass-forming binary
mixture. These functions measure the spatial correlations of the relaxation of
different particles. We found that these four-point functions are anisotropic and
depend on the angle between vectors �k and �r (or �q). The anisotropy is the
strongest for times somewhat longer than the β relaxation time, but it is quite
pronounced even for times comparable to the α relaxation time, τα . At the
lowest temperatures S4(�k, �q; τα) is strongly anisotropic even for the smallest
wavevector q accessible in our simulation.

1. Introduction

The hypothesis that there is a growing dynamical correlation length which accompanies
the glass transition, and that this correlation length is associated with the dramatic slowing
down of the dynamics of a supercooled liquid, has recently prompted many computational
and theoretical investigations [1–9] and some experimental studies [10, 11]. Several studies
have been motivated by the observation that the relaxation of the supercooled liquid involves
the correlated motion of clusters of particles, and the size of the clusters increases with
decreasing temperature [12]. Since two-point correlation functions, for example the van Hove
correlation function, do not provide any information about the spatial correlations of particle
relaxation, four-point correlation functions were introduced. The dynamic correlation length
was determined by studying the spatial decay of these four-point correlation functions (or the
small wavevector dependence of their Fourier transforms), and several studies have found that
this dynamic correlation length increases with decreasing temperature [1, 3, 6, 13].

The four-point correlation functions are usually assumed to be isotropic (in some cases
they are isotropic by construction [3]). However, several researchers have noted that on the β

relaxation timescale the correlated motion of particles is not isotropic. Doliwa and Heuer [14]
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observed pronounced anisotropy in the β relaxation regime for a hard sphere system. Glotzer
et al reported that the motion of ‘mobile’ particles for a model binary Lennard-Jones liquid is
not isotropic but the particles move in patterns which they referred to as ‘string-like’ [15, 16].
In other words, the motion of particles in the liquid would be strongly coupled along quasi-one-
dimensional ‘strings’. These observations suggest that the correlated motion of the molecules
of the liquid is anisotropic during β relaxation. Therefore, an appropriately defined four-
point correlation function used to measure this motion should also be anisotropic, at least
in the β relaxation regime. In this paper we discuss a four-point correlation function and
the corresponding structure factor which are anisotropic on the timescale of both β and α

relaxation.

2. Simulation

To calculate the four-point correlation function and the corresponding structure factor we use
the trajectories generated in an earlier [17, 18] extensive Brownian dynamics simulation study
of a 80:20 Lennard-Jones binary mixture introduced by Kob and Andersen [19]. Briefly,
N = 1000 particles were simulated in a cubic box of length 9.4 σAA , using the interaction
potential Vαβ = 4εαβ[(σαβ/r)12 − (σαβ/r)6], where α, β ∈ {A, B}, and εAA = 1.0, εAB = 1.5,
εB B = 0.5, σAA = 1.0, σAB = 0.8 and σB B = 0.88. The details of the simulations are
described in [17, 18]. We only present results for the larger and more abundant A particles.
Thus, all sums over particles in the formulae below run over the A particles only. In the
figures we present the distance as r/σAA , the wavevector dependence as qσAA and the time
as t D0/σ

2
AA; D0 is the short time diffusion coefficient, which is temperature dependent in our

simulations. The temperature is expressed in units of εAA/kB.

3. Four-point correlation function

A four-point correlation function that we study characterizes correlations between the
relaxation of different particles. Consider the function

F̂n(�k; t) = e−i�k·[�rn (t)−�rn (0)], (1)

where �rn(t) is the position of particle n at a time t . The ensemble average of F̂n(�k; t) is equal
to the self-intermediate scattering function Fs(k; t),

〈F̂n(�k; t)〉 = Fs(k; t). (2)

The four-point function G4 measures correlations between the microscopic self-intermediate
functions pertaining to different particles separated at t = 0 by vector �r (see figure 1),

G4(�k, �r; t) = V

N2

∑

n �=m

〈F̂n(�k; t)F̂m(−�k; t)δ[�r − �rnm(0)]〉, (3)

where �rnm = �rn − �rm , V is the volume and N is the number of particles. In this work we fixed
|�k| = 7.25, which is around the value of the first peak in the static structure factor [18]2. Note
that G4(�k, �r; 0) = g(r) where g(r) is the pair correlation function.

The microscopic self-intermediate functions F̂n(�k; t) are sensitive to the motion of
particles along the wavevector �k. Thus, the four-point function G4(�k, �r; t) measures
correlations between the motion of particles along �k. We expect that for small values of |�r |
the anisotropy of these correlations is most pronounced for �r parallel to �k.

2 The susceptibility χ4(k; t) depends non-trivially on k, see [20].
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Figure 1. G4(�k, �r; t) is a pair correlation function in which contributions of the individual particles
are weighted by their microscopic self-intermediate functions F̂n(�k; t).

To investigate local correlations on the α relaxation timescale3 we expanded G4(�k, �r ; t)
into the Legendre polynomials,

G4(�k, �r , t) =
∑

n

Ln(k, r; t)Pn(�̂k · �̂r) (4)

where Pn is the nth Legendre polynomial, �̂k = �k/k, �̂r = �r/r , and

Ln(k, r; t) = 2n + 1

4π

∫
G4(�k, �r , t)Pn(�̂k · �̂r) d�̂r . (5)

In equation (5) d�̂r denotes integration over a unit sphere. If G4(�k, �r; t) does not depend on the
angle between �k and �r , then Ln(k, r; t) will be zero for n > 0. Note that the imaginary part
of G4(�k, �r ; t) is not zero, thus there are non-zero real and imaginary parts to Ln(k, r; t); by
symmetry, the imaginary part of Ln(k, r; t) is identically zero for even n, and the real part is
zero for odd n.

In figure 2 we present results for L0(k, r; τα), Im L1(k, r; τα) and L2(k, r; τα) where τα is
the α relaxation time (see footnote 3). As expected, even on this long timescale there are strong
local correlations between the relaxation of particles. The height of the first peak of the isotropic
component of G4, L0(k, r; τα), increases with decreasing temperature. Furthermore, we find
pronounced anisotropy of the local correlations. The correlations revealed by G4(�k, �r ; τα)

are the strongest when vectors �k and �r are parallel. The amplitude of the anisotropic part of
G4(�k, �r; τα) is, roughly speaking, temperature independent for T � 1.0.

4. Four-point structure factor

To examine correlations between particle relaxation for large distances we turn to the structure
factor corresponding to the four-point correlation function, S4(�k, �q; t):

S4(�k, �q; t) = 1 + (N/V )H4(�k, �q; t), (6)

3 The α relaxation time is defined to be when Fs(�k; τα) = e−1, where |�k| = 7.25.
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Figure 2. The projections L0(k, r; τα), Im L1(k, r; τα) and L2(k, r; τα) for T = 0.45, 0.55, and
1.00.

where H4(�k, �q; t) is the Fourier transform of G4(�k, �r ; t) − F2
s (k; t). For �q �= �0 we have

S4(�k, �q; t) = 1

N

∑

n,m

〈F̂n(�k; t)F̂m(−�k; t)e−i�q ·�rnm (0)〉. (7)

Four-point wavevector-dependent functions similar to S4(�k, �q; t), usually evaluated at t = τα,
have been used previously to determine dynamic correlation lengths [1, 7, 9].

First, in figure 3 we examine projections of S4(�k, �q; t) onto the Legendre polynomials,

In(k, q; t) = 2n + 1

4π

∫
S4(�k, �q, t)Pn(�̂k · �̂q) d �̂q, (8)

at the α relaxation time. We do not show I1(k, q; τα) since it is small for qσAA < 5. Next,
in figure 4 we examine S4(�k, �q; τα) for different angles θ between �k and �q . In accordance
with numerous earlier investigations [1, 2, 5, 6], we find that the large long-range correlations
between the relaxation of particles increase with decreasing temperature. Surprisingly, we find
that even the long-range correlations on the α relaxation timescale are strongly anisotropic.
At low q the correlations are strongest for �q ⊥ �k. In direct space this corresponds to strong
correlations for particles separated by a vector �r which is parallel to �k.

The anisotropy of S4(�k, �q; t) makes the determination of a single dynamic correlation
length difficult. We tried to fit the low �q values of S4(�k, �q; t) for a fixed angle θ between �k
and �q to several different functional forms, but could not find a form where the results were
reasonable for T < 0.50. Specifically, fits to an Ornstein–Zernicke formula were very poor.
The correlation length determined from the fits was either larger than half the simulation cell,
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Figure 3. The projections I0(k, q; τα) and I2(k, q; τα) for T = 0.45, 0.55 and 1.00.

or we had to fix the unknown �q = �0 value of S4(�k, �q; t). Larger systems need to be simulated
in order to better understand the low q behaviour of S4(�k, �q; t).

While it has been previously shown that heterogeneous dynamics on the β relaxation
timescale is anisotropic [14], the strong anisotropy of S4(�k, �q; τα) was a surprise. To investigate
the time dependence of the anisotropy we examined the ratio S4(�k, �q⊥; t)/S4(�k, �q‖; t), where
S4(�k, �q⊥; t) is calculated for the smallest wavevector allowed due to the periodic boundary
conditions (|�q⊥| = 2π/L) perpendicular to �k and S4(�k, �q‖; t) is calculated for the smallest
wavevector (|�q‖| = 2π/L) parallel to �k. This ratio is shown in figure 5 for T = 1.0, 0.55
and 0.45. The arrows in the figure indicate the α relaxation time and the β relaxation time,
τβ . The β relaxation time was determined by finding the first inflection point of Fs(�k; t)
as a function of ln[t]. For T = 1.0, this inflection point does not exist. The peak in the
ratio S4(�k, �q⊥; t)/S4(�k, �q‖; t) (i.e. the maximum anisotropy) occurs between the β and the α

relaxation times, but is closer to the β relaxation time for the lower temperatures. However, the
correlated motion is still strongly anisotropic around τα .

Finally, we compared S4(�k, �q0; t) for the smallest wavevector allowed due to the periodic
boundary conditions, |�q0| = 2π/L, with the four-point susceptibility

χ4(k; t) = 1

N

∑

n,m

〈F̂n(�k; t)F̂m(−�k; t)〉 − 〈F̂n(�k; t)〉〈F̂m(−�k; t)〉. (9)

As observed before [20], while S4(�k, �q = 0; t) = χ4(k; t), the susceptibility χ4(k; t) is
ensemble dependent, and in a constant-N ensemble lim�q→0 S4(�k, �q; t) �= χ4(k; t). In figure 6
we show the correlation function S4(�k, �q0; t) and the susceptibility χ4(k; t) for several angles θ

between vectors �q0 and �k for T = 1.0, 0.55 and 0.45. For a fixed θ there is a peak in S4(�k, �q0; t)
around τα . The exact position of the peak depends on the angle between �q0 and �k, and occurs
at a time larger than τα for �q0 parallel to �k, but smaller than the τα for �q0 perpendicular to �k. It
is clear from figure 6 that the time dependence of the correlation function S4(�k, �q0; t) and that
of the susceptibility χ4(k; t) are quite different. This is significant because time dependence
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Figure 6. The four-point correlation function S4(�k, �q0; t) as a function of time for T = 0.45, 0.55
and 1.0. The solid lines are for the angles 0◦, 30◦, 45◦, 60◦ and 90◦ listed from bottom to top. The
dashed lines represent the angles 120◦, 135◦, 150◦ and 180◦ listed from top to bottom. The dark
dashed dotted line is χ4(k; t) and the vertical dotted line marks the α relaxation time.

predicted by recent extensions of the mode-coupling theory [21] for the correlation function
S4(�k, �q; t) are usually checked against simulation results for the susceptibility χ4(k; t) [9, 22].

5. Conclusions

We have shown that there is a pronounced anisotropy of the correlations of the relaxation of
particles in a model supercooled liquid even on the timescale of the α relaxation time. The
anisotropy of the short-range correlations seems to be weakly temperature dependent. On the
other hand, the anisotropy of the long-range correlations, revealed by the four-point structure
factor, is more pronounced at low temperatures. This anisotropy will need to be addressed
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in theoretical descriptions of heterogeneous dynamics of supercooled liquids. In particular,
theoretical input is needed in order to elucidate the relation between anisotropic four-point
correlation functions and a dynamic correlation length. Finally, we expect that the anisotropy
of the four-point correlation functions examined in this paper will help to differentiate between
competing theoretical descriptions of heterogeneous dynamics.

Acknowledgment

We gratefully acknowledge the support of NSF grant no. CHE 0517709.

References

[1] Bennemann C, Donati C, Baschnagel J and Glotzer S C 1999 Nature 399 246
[2] Donati C, Glotzer S C, Poole P H, Kob W and Plimpton S J 1999 Phys. Rev. E 60 3107
[3] Glotzer S C, Novikov V N and Schroder T B 2000 J. Chem. Phys. 112 509
[4] Doliwa B and Heuer A 2000 Phys. Rev. E 61 6898
[5] Gebremichael Y, Schroder T B, Starr F W and Glotzer S C 2001 Phys. Rev. E 64 051503
[6] Lacevic N, Starr F W, Schroder T B, Novikov V N and Glotzer S C 2002 Phys. Rev. E 66 030101(R)
[7] Lacevic N, Starr F W, Schroder T B and Glotzer S C 2003 J. Chem. Phys. 119 7372
[8] Berthier L 2004 Phys. Rev. E 69 020201(R)
[9] Toninelli C, Wyart M, Berthier L, Biroli G and Bouchaud J P 2005 Phys. Rev. E 71 041505

[10] Berthier L, Biroli G, Bouchaud J P, Cipelletti L, El Masri D, Lhote D, Ladieu F and Pierno M 2006 Science
310 1797

[11] Dauchot O, Marty G and Biroli G 2005 Phys. Rev. Lett. 95 265701
[12] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[13] Tracht U, Wilhelm M, Heuer A and Speiss H W 1999 J. Magn. Reson. 140 460
[14] Doliwa B and Heuer A 1998 Phys. Rev. Lett. 80 4915
[15] Donati C, Douglas J F, Kob W, Plimpton S J, Poole P H and Glotzer S C 1998 Phys. Rev. Lett. 80 2338
[16] Gebremichael Y, Vogel M and Glotzer S C 2004 J. Chem. Phys. 120 4415
[17] Szamel G and Flenner E 2004 Europhys. Lett. 67 779
[18] Flenner E and Szamel G 2005 Phys. Rev. E 72 031508

Flenner E and Szamel G 2005 Phys. Rev. E 72 011205
[19] Kob W and Andersen H C 1995 Phys. Rev. E 51 4626

Kob W and Andersen H C 1995 Phys. Rev. E 52 4134
[20] Chandler D, Garrahan J P, Jack R L, Maibaum L and Pan A C 2006 Preprint cond-mat/0605084
[21] Biroli G and Bouchaud J P 2004 Europhys. Lett. 67 21
[22] Szamel G and Flenner E 2006 Phys. Rev. E 74 021507

8

http://dx.doi.org/10.1038/20406
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1063/1.480541
http://dx.doi.org/10.1103/PhysRevE.61.6898
http://dx.doi.org/10.1103/PhysRevE.64.051503
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1103/PhysRevE.69.020201
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1126/science.1120714
http://dx.doi.org/10.1103/PhysRevLett.95.265701
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1006/jmre.1999.1854
http://dx.doi.org/10.1103/PhysRevLett.80.4915
http://dx.doi.org/10.1103/PhysRevLett.80.2338
http://dx.doi.org/10.1063/1.1644539
http://dx.doi.org/10.1209/epl/i2004-10117-6
http://dx.doi.org/10.1103/PhysRevE.72.031508
http://dx.doi.org/10.1103/PhysRevE.72.011205
http://dx.doi.org/10.1103/PhysRevE.51.4626
http://dx.doi.org/10.1103/PhysRevE.52.4134
http://arxiv.org/abs/cond-mat/0605084
http://dx.doi.org/10.1209/epl/i2004-10044-6
http://dx.doi.org/10.1103/PhysRevE.74.021507

	1. Introduction
	2. Simulation
	3. Four-point correlation function
	4. Four-point structure factor
	5. Conclusions
	Acknowledgment
	References

